
Pergamon 
J. Appl. Maths Mechs, Vol. 62, No. 5, pp. 803-806, 1998 

© 1999 Elsevier Science Ltd 
All fights reserved. Printed in Great Britain 

PII: 80021-8928(98)00102-6 0021--8928/98/S--see front matter 

RESONANT FREQUENCIES OF THE SCATTERING OF 
ELASTIC WAVES BY THREE-DIMENSIONAL CRACKSt 

Ye.  V. G L U S H K O V  a n d  N .  V. G L U S H K O V A  

Krasnodar 

(Received 17 October 1997) 

The diffraction of elastic waves by three-dimensional cracks of arbitrary cross-section is investigated. Using an earlier method 
[1] for solving the resulting systems of integral equations, the dependence of the resonance scattering frequencies on the crack 
shape is analysed. The numerical results indicate that the crack shape has a noticeable effect on the distribution of resonance 
poles in the complex frequency plane. In theory, this means that the information obtained can be used to solve inverse problems 
of flaw detection (determining the size and shape of a crack from the reflected signal). © 1999 Elsevier Science Ltd. All rights 
reserved. 

One of the basic problems in ultrasonic flow detection in materials, compounds and structures is to determine the 
size and shape of a flaw (and a crack, in particular) from the reflected wave field. If the transmitted waves are 
considerably shorter than the dimensions of the flaw, the problem can be solved in the ray approximation of 
geometrical optics) [2]. However, in many cases of practical interest, the diameter of the flaw is comparable with 
or less than the wavelength and the reflected signal gives a "blurred" image, from which its size and shape cannot 
be determined immediately. Thus in order to establish the shape of the flaw, one must employ special algorithms 
which minimize a certain specific discrepancy function when the size and shape of the reflecting object are varied 
[31. 

Since the direct diffraction problem is solved at each step of the minimization, the solution of the inverse problem 
often involves considerable computer costs. More importantly, these problems, in general, are ill-posed, needing 
special regularization to achieve stable numerical convergence [4]. As we know, one way of regularizing inverse 
problems is to restrict the set on which the solution is sought (in the case here, the set of allowable shapes for the 
crack). This can be done using further information on the expected properties of the solution. In the case of inverse 
wave problems, this could be information on the resonance properties of the object under investigation. 

The main parameters used in ultrasonic flaw detection are the time at which the echo signal arrives (to locate 
the position of the object), the scattering diagrams and the energy reflection coefficient (to determine its orientation, 
size and shape). The energy reflection coefficient Y. = E1/Eo, where E1 is the energy of the scattered field and 
E0 is the energy transferred by the incident wave across an area of the same size as the crack, depends, like the 
scattering diagram, on the crack shape, the form of the incident wave, the angle of incidence and the frequency. 
For practical values of the angular frequency o of steady oscillations ue ' ~  the values of Z(o~) are finite. However, 
if the solution is continued analytically into the complex plane of co, E(o~) increases without limit at some points 
co k (k = 1, 2 . . . .  ) of the lower half-plane. An important point is that the quantities o~, called complex resonance 
poles or characteristic scattering frequencies, being points of the spectrum of the corresponding integral operators 
(cf. [1]), depend only on the properties of the material and the region D occupied by the crack, and not on the 
angle of incidence (orientation) or (with some qualifications) on the form of the incident wave. Thus, the amount 
of information needed to identify the crack shape from the scattered field can be considerably reduced by: (1) first 
obtaining the distribution of poles as a function of the shape, and (2) being able to separate the resonance frequencies 
from the recorded reflected signal. 

These ideas are the basis of the singularity expansion method (SEM), which was originally devised to locate 
objects by means of electromagnetic waves [5]. During the 1970s and 1980s various ways of using resonance scattering 
frequencies of scalar electromagnetic and acoustic wave fields to determine the shape and properties of a scatterer 
were proposed (see the review in [6]). The method was later applied to elastodynamics [7], but the success achieved 
was much more modest, primarily because of the difficulty of solving the corresponding direct elastodynamics 
problems. Thus, the resonance poles in diffraction by three-dimensional cracks have been found only for circular 
[8] and near-circular (elliptical) [9, 10] cracks. The method that we used in [1] permits quite a wide variation in 
the crack shape. The results presented below demonstrate how the pole distribution pattern changes when the 
crack is far from circular. 

Cons ider  the diffract ion of  a given wave field u0(x)e q ~  by a crack in an elastic space  occupying a 
p lane  region f~. T h e  p r o b l e m  reduces  to a system of  two-dimensional  W i e n e r - H o p f  integral  equat ions  
over  f l  with hyper-s ingular  kernel .  The  me thod  for  solving these equat ions  and the no ta t ion  used are 
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given in [1]. The values of the required resonance poles co~ of the reflected field Ul(/~ CO) can obviously 
be approximated by the values of the parameter co for which A(co) = detA(co), the determinant of the 
matrix of the system of linear algebraic equations which arises as a result of discretization (system (1.6) 
of [1]) 

a(co)e( ) = (1) 

vanishes. 
The corresponding characteristic scattering forms ulj,(x, cox) are then defined in terms of the 

eigenvectors Ok: A(co,c)ek = O. Like the resonance poles, these are independent of the cause of wave 
emission (of the right-hand side f), and so the information on the characteristic scattering forms can 
also be used to identify the object. It has also been reported that a rigorous proof has been obtained 
of the one-to-one correspondence between the size and shape of a crack on the one hand and the first 
resonance pole and corresponding scattering shape on the other/f It should be noted that not all the 
zeroes of the determinant A(co) are poles of the solution e(co) of system (1) or, therefore, poles of ul(x, 
co). Calculations have shown that in the solution c(n)(co) = A(n)(CO)/A(CO) (n = 1, 2 . . . . .  N) more than 
half are removed identically by the equal zeros of the minors appearing in A(")(co). 

We know that the solution of the harmonic problem for real co has the property ul(x - co) = aT(x, 
co) (the asterisk here and henceforth is used to denote the complex conjugate). This property ensures 
that the solution vl of the corresponding transient problem is real-valued when represented in the form 
of a Laplace-Fourier integral (frequency expansion) 

vt(x,t) = ~ ~u,(x,  to)e- i~dtof f i lRe~u, (x ,  to)e-~td{o (2) 
2~ ._. g 0 

In an analytic continuation into the complex plane of co, this property takes the form 

= u Cx, co) (3) 

The tilde denotes the transition to complex values, which are symmetric about the imaginary axis: 
co = -co* [11]. It follows from (3) that the poles of Ul(co) are situated symmetrically in the  lower 
half-plane Im co ~< 0 relative to the imaginary axis Reco = 0. There cannot be any poles in the upper 
half-plane, since they would violate the causality principle. Thus, upwards closure of the integration 
contour in (2) for t < to, where to is the time at which the leading front of the reflected field arrives at 
the point x, would give non-zero values of v in the form of the sum of residues at these poles. Henceforth 
we will use cok tO denote only irremovable poles lying in the right-hand lower quadrant Re co > 0, 
Im ~ --.< 0. 

For t > to the closure of the integration contour in representation (2) into the lower half-plane gives 
a solution in which there is a contribution from residues and from the integral over the sides of cuts L 
(if there are branch points) 

Vl (t) = -iY[resul (co) l e - * t t  _ e -/rest 4- res Ul(Ca ) I,,=6 t e-/&tt ] - ~--1 lUi (co)~-/~d(9 - - 2 X  L 

ffi 2 Z  Irn[res u t (¢0) I®=** • - / ° ' ,  ] - ~ J u I (¢o)e-~dco (4 )  
k 21~ t. 

Generally speaking, the integrand in (2) can include exponential components of the form e -~°'(t-~.), 
tn > to, which are decreasing from to < t < tn in the upper half-plane. Thus, in the interval to < t < max 
tn (in physical terms, before the signal has arrived from all points of the radiating object) the contour 
is closed downwards for only some of the components of ul(co). Examples are given of the construction 
of a transient solution in this case in [11] and the problem will not be considered further here. 

Allowing for the eontrib, ution of .symmetric poles cok in (4), we have used the properties res u(co)lo,=~, = 
, -fO} t -I03 t , -[res u(co)lo, ffio,,] and e k _- (e , ) and assumed that the poles cok are simple and are not on the 

imaginary axis. If there are poles on the imaginary axis, the contour L must be modified so tlaat tlaey 
remain outside it (their contribution is complex-valued, which is unacceptable for a real transient solution 
vl(t)). 

tLABREUCHE, C., Inverse obstacle scattering based on resonant frequencies. INRIA Conference on Inverse Problems of Wave 
Propagation and Diffraction, Aix-les-Bains, France, 23-27 September 1996. 
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Fig. 1. Fig. 2. 

The sum of the residues in (4) is the set of exponentially decaying harmonic oscillations Vk(X, t) = 
{O (1), D (2), U (3) } o f  the  fo rm 

U) U) - P t t •  (t) u t (x,t)=2a~ (x)e sin(Or -exit) (5) 

where a~ O, O~ t) are the modulus and argument of the complex components of the residue: res uft)l<o=~k = 
"e (t) 

a~Oe ~ ~, and ak, 13k are the real and imaginary parts of the poles: (ok = Qtk - il3k; ak, 13k > O, giving 
respectively the angular frequency and decay decrement of these harmonics. 

In practical non-destructive testing, signals of the form (5), which are emitted by cracks, are recorded 
by acoustic emission methods. 

In the case of a homogeneous isotropic space, the structure of the matrix-kernel of the integral 
equations is such that the system can in fact be split into two independent systems: in terms of the normal 
and tangential components of the displacement jump (cf. (1.4) [1]). Accordingly, system (1) also splits 
into two independent systems and A(to) = Al(to)A2(co), where A1(co ), A2(e0 ) are the determinants of these 
systems for the normal and tangential components. 

Thus, for an isotropic homogeneous medium, the set of resonance poles consists of two indepen- 
I) 2) dently determined sets tz~ and o)~ (the roots of the functions A1 and A2), which we call poles of the 

first and second types [9]. The reflected field usually carries resonances of both kinds, but in the special 
case where a P- or S-wave is normal to the crack, P- or S-waves with resonant frequencies of only the 
first or the second type, respectively, are also reflected. There is no such splitting when the cracks are 
on the surface of a joint between two materials of different kinds (or, in the general case, in vertically 
inhomogeneous media), but in this case too one can nominally identify the poles as being of the first 
or second type, tracking their correspondence as the properties of the materials change continuously 
from the composite to the homogeneous half-space. 

A numerical search was made for resonance poles in the complex plane by Miller 's method of parabolas, the 
number of roots of the analytic functions Al(C0), A2(0~) being found by the principle of the argument. The results 
were checked by comparing them with the known results for a circular crack [8, 9]. 

Figures 1 and 2, respectively, show the results for poles of the first and second types in the complex plane of the 
dimensionless frequency co = 2nfro/Os ( f  is the dimensional frequency, t~s is the velocity of S-waves, r0 = ",1(So~n) 
is the characteristic linear dimension and S~ is the area of the crack, for a circular region r0 is equal to its radius); 
Poisson's ratio v = 0.25. The open circles are the resonance poles for a circular crack, obtained previously,t the 
small squares correspond to a square crack of the same area. There are more open circles because removable poles 
are included for the circular crack. The non-removable resonant frequencies for a circle and a square are quite 
close. The main factor here is the area of the crack. We note that for two similar regions ~1, f12, differing only in 

fALVES, C., i~tude num~rique de la diffraction d'ondes acoustiques et 61astiques par une fissure plane de forme quelconque. 
Probl/~mes directs et inverses. Doctoral thesis, El~cole Polytechnique, Compi~gne, France, 1995. 
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their area $1 and $2, the pole distribution patterns are also similar, with similarity factor K = ~/($1S2): (.0 (2)  = k¢o 0). 
By virtue of the frequency normalization chosen above, the area of any region f~ in dimensionless units (relative 
to r0) is equal to the area of the unit circle So = n, and this is convenient for analysing the effect of the shape. 

Figures 1 and 2 show the trajectory of motion of the first three non-removable poles of the first and second 
types as the region changes continuously from a square to an elongated rectangle. The numbers 1, 2 . . . .  indicate 
the position of the poles for rectangular regions with a ratio of the sides of 1:1, 1:2, etc. Lengthening the crack 
greatly affects the pole distribution, whereas it differs very little in the case of a square and a circle. It is also worth 
noting that the change in the position of the first pole of the first type as a function of the eccentricity of  the elliptical 
cracks [9] agrees with the path of  displacement for rectangular cracks downwards and to the right (Fig. 1). 

Apart from rectangles, we considered L-shaped cracks (the shapes are shown in the bottom right-hand part of 
Fig. 1). The protuberance has very little effect on the position of the pole (see points 2' and 4' in Fig. 1, for instance). 
The main factor influencing the position of the resonance poles appears to be the ratio of the length and the main 
transverse dimension. 

This  work  was  suppor t ed  financially by the Russian Founda t ion  for  Basic Resea rch  (96-01-00457). 
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